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The Generation of Three-Dimensional Body-Fitted
Coordinate Systems for Viscous Flow Problems

*
by Z.U.A. Warsi

} — Abstract
o ‘

/’ The main aim of this research has been to develop and implement
a technique for the generation of spatial coordinates in 3D regions
enclosed by arbitrary smooth surfaces for ultimate use in the
numerical solution of the Navier-Stokes equations. 1In this regard, a
mathematical model based on a set of elliptic PDE's. has been

developed, which has been used to generate smooth coordinates in the

region formed by arbitrary inner and outer surfaces of known shapes,
around multibodies, particularly around a wing~body combination.
These equations have also been used to generate surface coordinates
in arbitrary surfaces and are also capable of coordinate

redistribution in any desired manner both in 3D regions and in 2D

surface regions. -fi)7
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Introduction

\_;7The problem of numerical grid generation in sgiii%e?; %Pg&mj?ivn
three-dimensional configurations through ellipticV‘PDE‘gf\has been
pursued under this grant Lperiod.~ Various reports and journal
publications produced under Xthe present grant have explained the
mathematical model‘in detail, | (Refer to a 1list of publications
produced in the grant period). ¥ The developed mathematical model has
been programed on CRAY-1 and has been tested for single and two-body
configurations enclosed in a single outer boundary (refer to Appendix
C) and for generation of coordinates in a single surface, (refer to

Appendix B). The main elements of the mathematical development are

contained in Appendix A.
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oLy 1983

A NOTE ON THE MATHEMATICAL FORMULATION OF THE PROBLEM
OF NUMERICAL COORDINATE GENFRATION®

By
Z U A WARSI

® Mussissipp: State University:

Abstract. A set of second order partial differential equations for the generation of
thrce-dimensional grids around and between arbitrary shaped bodies has been proposed.
These equations basically depend on the Gauss equations for a surface and have been
structured in such a way that an automatic connection is established between the
succeeding generated surfaces. '

The vanishing of the Riemann curvature tensor has been used 10 isolate those funda-
mertal equations which every coordinate system in either two- or tlyee-dironsional
Euclidcan space must satisfy.

1. Iatreduction. The problem of generating spatial coordinaies by nueicz! mothadeis
a probiem of much interest in practically all branches of engineering science and ph sics.
At present a number of techniques are under active development for the generation of
two- and three-dimensicnal coordinates around apd beiween bodiec of arhitrary shapes.
Among these efforts two easily discernable groups can be formed: (i) the meth.ads based
on the solution of certain PDE's, preferably of the elliptic type, and (i) the alicbraic
methods. In a large number of metheds in the first group a set of inhom ~genvous Laplace
equations is taken as the basic generating system. These cquations are then inveried and
solved for the Cartesian cocrdinates in the transformed plane. Based on this line of
approach which started with the work of Winslown (1] some very practical recults,
particularly in two dimensions, have been obtained by Thompson et al. [2] and others.!
For the generation of plane cunilinear coordinates some authors have also used hyper-
bolic and parabolic sysiems of equations, {3). For the methods in the second greup. e,

o the algebraic methods, refer to [3).
In this paper we have first considered the formulation of a 3D grid generation scheme

,,. which is basically dependent on the Gauss® equations for a surface. In this scheme a senes

o

- *Rece’ved May 10, 1962 This rewarch has beez cupporied by the Air Force Office of Scientific Rewearch,
under grant AFOSR 83-0185 The material of ths paper is based ob an exicnded paper subm:tied at 2

NASA AFOSR sponscred confe,ence on pumernical gnd generaton beld st Nashville, Tennessee  Apnl 12-16

1982, |6}
"Refer 10 [3] for ap extensive bib'iography on the subject. o83 B v .
: owp Lnoemty
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322 Z U A WARSI

of surfaces are gencrated based on the given data of arbitrary shaped inner and outer
surfaces. The method has also been structured in such a way that the variation of the third
coordinate from one generated surfice to the next is fully reflecied in the sysiem of
generating equations. It has been found that these generating system of equations are
simple to implement numerically. In particular, the solution of the proposed eguations
tends to the solution of the Laplace eguations in the transformed plane in case the surface
becomes a Cartesian plane. An exact solution of these equations for the case of three-di-
mensional curvilinear coordinates beiween a prolate ellipsoid and a sphere has been
obtained.

In a plane, or a surface, or a 3D space there are endless possibilities of introducing
either orthogonal dr non-orthogonal coordinates. This realization imparts a sense of
arbitrariness to the choice of the methad to be used for coordinate generation. If it is a
priori decided that the method should be based on sclving partial differential equatioans
then the arbitraniness in the selection of the approprate equations for the generation of
coordinates becomes a prohiem to be resolved. In Sec. 3 of this paper it has beer shown
that despite this arbitrariness it is possihle to uncover certain sets of equations which must
invariably be satisfied no matter whick equations or methods Lave been used to generate
the conrdinztes. For a detailed discussion of the methods discussed here and or some

2y s memma . . . ., . .
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-
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numencal results refer to Warsi [4-7].
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2. Generating system baced on the Gauss® equations. In the process of formulation of a
3D cowordinate goneration problem it is helpful to imagine the coordinates of a point in
space as the intersection of three distinct surfaces on each of which one coordinate is held
fixed. Using the convention of a right-tanded cunvilinear coordinate system x', x2, x* or
¢ n. ¢ (sefer to Fig. 1) we introduce the coordinates in the surface x” = const. throogh the
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PROBLEM OF NUMERICAL COORDINATE GENERATION 223
Thus the vnit normal vector on the surface x* = const. is
o= (r,X15)/|r, X 14| (1)

where
»r=1a=2,8=3, »r=2:a=3,8=1; r=3a=18=2 (2)

From elementary differential geometry [8] we have the result that the rectangular
Cartesian coordinates r = (x, y, 2) or (x;, x3, x;) of any point on every surface em-
1.2dded in an Euclidean E, must satisfy the equations of Gauss. The Gauss equations for a

surface x” = const. are given by
. Top = Tty + b gu”, 3)
where all the Greek indices except » can assume only two values. The values of a, 8 and
the range of & with » follow the scheme given in (2). In Fq. (3),
or 3

v

=, Fop = ———=,
R U 2 axtax?
Té op are the surface Christoffe] symbols of the second hind,? i.e.,
7.
- = g**[aB. 0], (4a)
.._ _ ] Bg" " agﬁo agaﬁ
h [aﬁ,a]——z(a, T axt x|’ (40)
and b, are the coefficients of the second fundamental form. Since on the surface

= const. the vector 0" is orthogonal to the surface vectors ry,

- by =" 1., ()
P For the purpose of a clear potation we denote the space Christoffel symbols as

¥ I, = g4, k). (63)
Efj where

b 1= )[38s, 38 _ %,

F [, k] = 2\ ax/ * ax'  ax*/’ (6b)
r’ Using (€a), we have

. az 7

: r,= YW =Ty, (M

where all the Latin indices assume three values. .
To fix ideas, we envisage a surface which is formed of the surface coordinates (€, ) and |

[} ,

- on which { = const. Drupping the index » in Fq. (3), the three equations for the second
. derivatives of the Cariesian coordinates are

w=Tho+byn, 1, =They+ bn, 1 = Thr + bz, (8a,bic)
P In Egs. (8) o is orthogonal 1o both r, and r, and the coefficients of the first fundamental
[ € ]

N ?Refer tc Appendix A for a collection of other formulae
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..
form g,), 8,2, 82, are assumed 10 have been evaluated at § = const. Obviously
= -
- “Cgn=xity i, gu T xx tynt oz, 8n = Xyt )y + 2. )

C = Muluplying Eq. (8a) by g,,, Eq. (8b) by -2g,,. Eq. (8¢) by g,, and ad ng the three
" equations, we get

& +[(8;6)r + (A )]G, = nR, (10)
where
£= 8123“ — 28,0, * £118,,, (11a)
4, =[3‘{(gz;3‘ - 3123-)//6;} + aq{(gnaq - 8»:85)/)/—6—3}]/\/6;. (11b)
G; = 8.8 _(812)2- (11¢c)
n=(XY,2),
X=(y2g = 22 )NGs. Y = (xy2— x,2)/VGy. Z = (x5, — x,3)/(G,
(11d)
®
R = (8330, — 28,3012 + g11by) = Gy(k, + k3), (Yie)

where k, + &, is twice the mean curvature of the surface.
The cperator A or simply A, defined in (11b) is the second crder differential ope:-ior
of Beltzams [B], for the surface § = const. For any surface x” = const. and following the

scheme (2), we have

A(;) =[ao{(gﬁﬁaa - gaﬂaﬂ)//—cj} + aﬂ{(ganaﬁ - gcﬂaa)//a}]/"rd-y ()2)
where G, are defined in Eq. (A.9). It is easy to show by using the surface Christoffel
symbols T2 that

8;¢= (28|2T|'2 - SzzTuln - Sn'r;z )/Gs' (13a)
A= (2g,,Th - 8T8 - 8.TS )/G;. (13b)

where the metric coefficients g_g are those as defined in (9). It is interesting to see that
when the Laplacian coperator w2 for a two-dimensional Cartesian space is applied to the

™

[’ cunvilinear coordinates (§, ) in an Euclidean plane, the resulting expressiont are exactly
of the same form as (13a,b), that is (refer to Eq. (A.13)),

t?f v = (22,7 - guT)) — 8uTh)/ (), (14a)
o 2

4 vin= (28,0 - 82T ~ 80 TR)/ (J), (14b)
where now

:f: T x" + )’¢2v BT xgxygt ) ¥y 80— X: + )’:- J =Xy = X

- Though the rnght-hand side tesm R defined in () ie) has the necessa~y extrinsic effects,
[ - nevertheless we must have an explicit dependence of ¢ = (x, p, 2) on the third coordinate
- {. Thus using Eq. (A.11) we bave

Raa A
W,
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PROBLEM OF NUMERICAL COORDINATE GENERATION 225

te =Thr+ Tar, + Thrg, (15a)

e = Dot + Thr, + Thirp, (15b)

Ty = Iihrg + Tare, + Trp, (15¢) |
and we evaluate each of these derivatives at { = const. Taking the dot product of Egs. (15) "
with n and comparing with Egs. (5), we get €

b, = AT}, b, =ATY, b, =AT3, (16a) !
where .
) (16b) ‘,

A =05 =X+ Yy + 2z,

Thus, the expression (11¢) for R is replaced by
R=A[g,T - 28, + g, 7). an
2.1 Fundamental gererating sysiem of equations. We now impese the following differen-
tial constraints on the coordinates £ and n: i
Azfzo- AI"' :0' (18) ;

and take them as the basic generating equations for the covrdiraies in a surface A
comparison of Eqs. (12) and (14) has alicady shcwn that 4 is not a 2D Laplace opcrator
except when the surface degenerates into a plane having no dependenie on the :-coordi-

pate.
It is a well-known result in differential geomeiry that the isothermic coovdinaies ip a

surface satisfy Egs. (18) identically. The iscthermic cocrdinates § and n are those
orthogonal coordinates in a surface which yield g,, = g,,. The situation bere is parallel to
the choice of the Laplace equations v =0, vy =0 for the gereration of plane
curvilinear coordinates {2], which are also satisfied by the conformal coerdinates 4n a
plane. The important point to note here is that the satisfaction of the Laplace equations is
a necessary but not a sufficient condition for the existence of confurmal coordinates.
Similarly, the satisfaction of equations (18) is a ne..exvsary but not a sufficient condition for
the existence of isothermic coordinates. It would, therefore, be more meaningful if we
interpret Egs. (18) as providing a set of differential constraints® on the metric coefficients

811, 812, and g,; defined in (9).
Having chosen Egs. (18) as the gcnerating system, the equations for the determipation

of the Cartesian coordinates, viz., Eq. (10) becomes

£r = nR, . (19)

where £, n and R have been defined in (11a), (11d), and (17) respectively. The three scalar
equations in expanded form are now

BuXge ~ 2812 %¢q + 811 %4 =

82V — 28:2)’(., + 81V = YR,

et
YA manifestation of the many possibilities for introducing coordinates in a giver place.

SR MR PN dOORa

XR, (20a)
(20b)
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et ‘-’—'.~:‘.'_'.-“'-".-"' e .-. Sl e .-‘. L
Ay




oy

. B ate vt bt 0@ o0 2y » 20
A, n M e o
R . -y - W)
L ] y . st

Ll uh s e se an Al o e e £
. . .
W - Ve

Z U A WARS]

226
guz“ - 2guz" + 8“2" = ZR. (2&)
For a plane z = const, R = 0 and the Egs. (20) are the inversions of the Laplace

equations in the {n-plane.
It can be shown that Eqs. (20) can be combined to obtain the equations of a surface

z = z(x, y) in the well known form,
az,, — 2Bz, + vz, =2HM, (21)

where
2H =k, +k;=R/Gy,, M=14+p*+¢, p=1:.9=2,

a=(1+g)/M, B=pe/\M. v=(1+p)/W.
Using the following definitions and identities
Gy =882~ (£:)', X=-p/\M, Y=q/M, Z=1/M,
Afx,x)=(1-X)G,, A(x,y)=-XYG,, A(y.y)=(1~- Y?)G,,
where
Afa,b) = gyya;b — g12(ah, + a,b;) + g,,0,8,.
calcu'ating zge, 2, 2,, from 2z, 2 and substituting these expressions in (20¢) while using

Eqs(20a,b), »e get Eq. (21).

We ncw use the result that if (§. ) is a permissible system of covrdinates in a surface
then so is (£ 7), where § = &(& n). 7= 7(£, m), provided that the Jaccbian of the
transformation does not vanish. It is a straight forward matter to show that on coordinate

transformation, Egs. (20} become

£x = XR, £y = YR, £:= ZR, (22a,b,¢)
where
L= g8 — 28,00, + £1:3;; + Po + 08, (23a)
P=g,P|, ~28,P), + §,P}, (23b)
Q—‘—‘S-uplzl "2§12P|22 +§“P222, (23c)

Lo 9t axf 3
* T 3x* 3x° 31%9xP’ (23)
and X, Y, Z, and R are exactly the same expressions as given in (11d) and (17), in the X
cocrdinate system. It is preferable to solve Eqs. (22) with Pgy as abitrarily prescribed
functions of the coordinates. This aspect of the formulation therefore provides a capability
to redistribute the cocrdinate systems in the surface in any desired manner.

2.2 Example of a solution algorithm. The discussion that follows pertains to the case
when it is desired to generate the 3D cunilinear coordinates between two arbitrary shaped
smooth surfaces. Let the surface coordinates ({, §) of the inner body 4 = 5, and of the

———

4For » limiting form of Eqs (22) refer 10 Appendix B.
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outer body n = 5 be the same coordinates. Thus ]
=t =6 8);  mEagr=r(68) '
are known functions (either analytically or numenically) and hence the needed partial ]

derivatives with respect to § and { are directly available at the surfaces.

3 For the computation of r; in the field one must first note that the coerdinate { may not,
& ' in general, satisfy the equation A9’$ = 0. Consequently, r; must satisfy the equation 1
\:': £ 4 GZ(AQ){)I’, Gz(km + km)nl!) (24)
From this equation we devise 2 weighted integral formula®
r= [ A(n)rg)y + fi(n)(ry) ] 8. 25a)
where
h ' G, 2¢g g
3 . r = k(Z) -+ km n;z. |3r - __;_3',
. (")B“ gll( ) g ¥ & «
_‘[E; 9 ( g.. ) 8 _§'_3_) r. (25b)
g | % %\le /5] :
and
f(n) =1, fi(ng)=0. filng) =0. filn.) =1
There is no difficulty in the numenical evaluation of (25a) in an iterative cycle after the
weighting functions f; and f; have been prescnibed a priori.

Referring to Fig (2a). we now solve Egs. (20) or (22) for each { = const., by pre&cnhmg
the values of x, y, 2 on the curves C, and C; which respectively represent the curves on B
and cc. In Fig. (2b) G, and C, are the cut lines on which penodnc conditions are to be

imposed.
2.3 An exact solution of the proposed equations. The following example demonstrates that

the proposed set of generating equations (22) are consistent and provide pontrivial

solutions.
We consider the case of coordinate generation between an inner body n = ng whichis a

prolate eflipsoid and an outer boundary 7 = 5, which is a sphere. The covrdinates which
vary on these two surfaces are { and §. A curve C, on the inner surface for { = const. is

x = rcoshn,cosd, y = rsinhngsinfcos§, z=rsinhn,sinsin§, (26a)
where 7 and n, are the parameters of the ellipsoid. Similarly t* = curve C, corresponding to
the same ¢ = const. on the outer surface is

x = exp(n, Joost, y = exp(ng )sin ¢ cos £.

z = exp(n, )sin{sin§. (26b)

.y

P A

. e —— s —-
v 3 The discussion given bere is direcied 10 the situation of Fig (20) For other situations. € g, simply-con-
. pected domains or multibody problems the method of calculating r; must aluays be devised separately Note
$' also that Eq (24) reflects the condition A% =0
0
’
’,
d .
v N
]
b
- -.-...‘-..-'.u*-‘ -’_-._- .‘.,.‘.. —.~r.7_ S—
P S IR A S Ter e % - B AR RN ing Pr— e &
HIJ,.J-EA_-& LS SR i g S St A(:Q- S tL_iA x.-(.m:'.-..“ .,5.....' s b T . 'v';Ar' ; ;_:-'..'- RO ’-",-.. . X "7“' .~ .- e




- ) Sl A e B

Py
LT

Lot o

g

.

MR AER S B o i e i o v
g S N Ty W U b i o T
s Riaat A SV BN ek g i (e aeran o o ]

228 Z U A. WARS]

F16. 2. (a) Topology of the gisen surfaces.
(b) Surfaces 1o be generated.

In order to generate surfaces on which § and n are the coordinates and in which the
n-coordinate can nonuniformly be distnbuted (co-traction or expansion in the n coordi-

nates), we assume
E=¢(8)., n=a(7)+n,. (27

where £ = 0 corresponding to § = 0 and 7 = 9, corresponding 10 7 = 7. Thus §(0) = 0
n(715) = 0. Under the transformation (27), the only nonzero components of £, are J 2

and P}. Writing

we have
1 dA 1 4¢
! = _ - X P2 = = ——
Py A at’ n 0 diy - (28)

Based on the forms of the boundary conditions (26a,b) we assume the following forms
for x, y, z for each §{ = const.:
x = f(7)eos§, y=e(q)sinfcos§, z=¢(7)sinlsiné. (29)
The boundary conditions are
J(7p) = 7coshmy,  f(9,) = exp(n,.),
¢(7ip) = rsinhny,  &(7,) = exp(n,).
Using the expressions of (29) we calculate the various partial derivatives, metnc coeffi-

cients, and all other data as nceded for Egs. (22). On substitution we get an equation
containing sin*$ and cos?{. Fquating to zero the coefficients of sin’{ and cos?$, we

(30)

obtain

e T
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I/ =6/8+¢/¢, (31)
/¢ =0,/8 + ¢ /¢, (32) i
where a prime denotes differentiation with respect to 7. Op direct integrations of Eqs. (31)
and (32) under the boundary conditions (30), we get
f(7) = Aexp(Bn(ii)) + C, (33a)
¢(7) = Dexp(Bn(7)), (33b)
where
A = r[(exp(n,) — 7coshn,)sinhn,]/ (exp(n.) — sinhn,),
B = (m, — In(rsinbm,))/(n, ~ ma),
C = r[exp(n,, )(coshn, — sinhny)] /(exp(n, ) ~ 7sinh7,),
D = 7sinh,.
As an application, we take
§€)=ak. (7)) = b(T - kT, (34)
where a, b, and k are constants. Thus
(i) = (n. - ﬂn)(’l - ﬂa)k(., -ie) (35)

N -7)3
By taking a value of k shghtly greater than one (k = 1.05) we can have sufficient
cantraction in the f-coordinate near the inner surface. For the chosen problem since the
dependence on § is simple, we find that the generated coordinates between a prolate

ellipscid and a sphere are
x =[Aexp(Bn(7)) + Cleost,  y = Dexp(Bn(7))sin¢cosé.

2z = Dexp(Bn(7))sin {sin ¢.
This example also shows that the chosen generating system of equations (20) or (22) are
capable of providing non-isothermic coordinates t<tween smooth surfaces.

(36)

MIRARASRAC
L S

3. Differential equations baced on the Riemann tensor. In any given space there are
endless possibilities for the introduction of coordinate cunves. Each chosen set of curves
determines its own metric components. For example, in a Cartesian plane besides
introducing rectangular Cartesian coordinates x, y, we also have endless possihilities for
introducing either orthogonal or nonorthogonal coordinate curves. However, as is well
known, there is a basic differential constraint on the variations of g, *s irrespective of the
coordinate system. Since the curvature of an Euclidean two-dimensional plane is identi-

4
E- cally 2ero, the basic differential constraint on the g, s is

/’r,,) at('[’rJ=o. (37)

1,2
(GJ) RIZI) an ( 8“

where €, n are any arbitrary coordinate curves in the plane. Thus no matter which
coordinate system is introduced in a plane, the corresponding matrics g,, must satisfy Eq.
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(37). Equation (37) has also been used as the basic generating equanon for the generation
of orthogonal coordinates in a plane [9]. In general, the Riemann cunature tensor R, ,,

defined as,

R = 1 azg,, + azgjg_ __328"- - azg”
a2\ ax’9x®  Ox'9x?  3x/9x? dx‘ox"
+g"([jn.s)lrp. 1] —Lip.s}{m,¢])
defines the components of the curvature tensor of any general space. If the space is

N-dimensional, then the number of components R, ,, are given by N*(N? — 1)/12. Thus
for N =2 there is one distinct surviving component stated in, Eq. (37). However, for

N =3, it has six distinct compenents R, Ri3p3. Riszss Ryzise Ryzsan Risys. If the
3D-space is Euclidean, then its cun ature is zero, so that the six equations

R22=0, Ry;3=0, Ry;y;»=0,

Ry =0, Ryp=0 - Ryu=0 (39)
defermine the differential constraints for the six metric coefficients g, in any coordinate
system introduced in ap Euclidean space. These equations in the expanded form have

(38)

been given in [5] and [6).
Equations (39) are those consistent set of partial differential equations which must

always be satisfied by the meiric coefficients g, . In the 3D case Egs. (39) are six equations
in six unknowns, and, therefore, they form a closed system of equations. In contrast, for
the 2D case there is only one equation (Eq. (37)) and three unknowns g,,, 8,2, 8;; and
therefore some constraints are needed to turn Eq. (37) (such as orthogonality {9]) into a

soh able equation.
To obtain the Cartesian coordinates on the basis of the available g, ’s, we intraduce the

unit base vectors A, as
A, =a/)/g,. nosumoni. (40)

Let the components of A, alung the rectangular Cartesian axes be denoted as u,. ¢, w,, S0
that
A, =(u,0,m),
where
u, = X¢/t[8¥n‘- o, ")’(/\/871—' w, = 2¢/)/8_n‘v
u = x‘/‘rg—;. v =.Vq/¥/:!Tz- ", = z./;[g;.
Uy = ’://8—;' 12 2)':/'[8—;2—- = 2‘/\/8;-
If the components u,, ¢, w, become hnown by some method then it is pessible to cvaluate
the Cartesian coordinates through the line integrals

'=I(A|JE|T“ + AﬂG;dﬂ + AHE;“)'

(41)

(42)
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The determination of v,, €,, w, is a separate problem which we now consider. First of all
using (40) in Eq. (A.11), we get a system of first order partial differential equations

/2
(8“) +Az(8ul‘ 1-3

a l 8“ Il
53] 3 _ ._A_'_ a_g,_,
A (x,.) L 2z, ax’’ (43)

where there is no sum on the repeated index i. EqQuations (43) form a system of 27 first
order PDE’s in nine independent variables w;, v,, w,. This system of equations is
overdetermined and thus its solvability should depend on certain compatibility conditions.
According 1o a theorem on the overdetermined system of equations {10], if the compatibil-

ity conditions bold then the solution of Egs. (43) exists and is unique. The conditions
3?A /3x™3x’ = 3%A, /3x’ax"™ (44)

- for all values of i, m, and j are the compatibility conditions. To prove (44) we use Eq.
t—.! (A.11), which on cross differentiation yields
: 3’a 3%
= ——t— - ——'- =Rl _a (45
& ax"3x/ ax’ax™ e (45)
- where R/, is the Riemann-Christoffel curvature tensor and is related to the Riemann's

=0, since the space is Fuclidean.

tensor R, o Evidently in our present case R .
Inserting (40) in (45) we find that Eq. {44} are identically satisfied.
It is interesting to note that for a two-dimensional cunvilinzar coordinate system there is

po peed 1o solve the system of equations such as (43). In this case the single diffesential
equation withG, = g

2 f‘
3 vl d [veTial| _
Ry = ix[an(‘""”“) 35(8“ ”-O

implies the existence of a single function a(§, n) such that

-

—JE "'8 I
--—T3, = —T2.

% gy " T &n 2 ‘

Consequently
=cosa, v, = -sira, u,=cos(a —#0), v,=-sin(a - §),

where a is the angle made by the tangent 1o the coordinate line y = const. in a clockwise
sense with the x-axis, and

cos 8 = £,,/{81182
is known The angle a becomes kncwn since g, , are known, e.g. [9].
3.1 Case of vrthugunal coord nates. For orthogonal coordizates since the cosines of the
angles betaeen the coordinate curves are 2¢ro, we have

8128 =8n=0. (46)
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Consequently,

[12,3] =(13.2] = [23,1] =0, T =T} =T} =0, g=8,,828x.
The equations for the metric coefficients, viz. Eqs. (39) under the constraints of ortho-
gonality (46) simply reduce to the Lame’s equations. They can concisely be wntten as six
equations by dropping the summation convention in the form

(1 ah,) ) (1 8h,) 1 9k, 3n,
—f=-2l+ = =)+ 2L 2=, 47
axf(", ax/|  axt\{h ax*/  h? ax' ax' (47a)
3 1 3k, 3k, 1 3h, 3h,
S 2 Ty T 47
. ax/ax* Kk, 3x’/ 3x* h, 3x* ax’ (47b)

where (i, J, k) are to be taken in the cyclic permutations of (1, 2, 3), in this order, and
b, = /ET. hy = V[Szz' }’3:/833-

To obtain the differential equations for the Cartesian coordinates x, = x, x, = y,
x; = 2, we first proceed from Eq. (A 13) and have

d 9 d
V‘EVZ& = 5&(”2"3/"!)- V’8—V2ﬂ = ‘a’;'("nhs/"z)- VE vi= gf(hnhz/hs)- (48)
where
',g_':h,h,h,. V’=3"+a”+au.

Proceeding directly from Eq. (A.14) and using Egs. (46) and (4R). the equations for the
Cartesian cocrdinates are
=0, m=1.223, (49)

g

‘:-_—-g.(fz.’il __a.) + _a_(f.'hl i) + 9 (!.’!1’.2 _3_)
= o\ A, d¢ en\ A, On o\ Ay 3/
Note that the operator = and the Laplacian v 2 are related as

Z¢ = hh AT,

where

where ¢ is a scalar,
Fquations (47) and (49) are those consistent set of equations which every orthogonal

coordinate system must satisfy.
3.2 The case of isothermic coordinates. Ysothermic coordirates in a surface embedded in a

3D Euclidean space are those coordinates in which the metric coefficients g,, and g,; in
the surface 5 = const. are equal. That is, the element of length ds on n = const. is given by

(d5)3 - com = £0[(a€) + (d5)],
where ¢, { are chosen to be the surface coordinates. Using (46) and setung
£ =8, and g, = F(n)
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in Egs. (39), we obtain the basic equations for g,,, whick are
a (1 9, e ( 1 38, l (alnr
L 2uh gy S + =0
ae (8“ ae a; b 1Y) a; zrg“ aﬂ ' (50.)
9 l 98, )
al =2 1|= 0, (50b)
ay vF8u L4
3 (1 98, )
—_— — — - 0'
i (lu on (50c)
. a (1 38 }
=1— =—1]=0
ae(ln o7 (s0d)
Tt can easily be verified that the only solution of Eqgs. (50¢,d) is
&n =[a + P(n)]zf(f, $). a = const. (51)
Thus from (50b)
F(n) = (aP/dn)". (52)
Substituting (S1) and (52) in Fq. (50a), the differential equation for f(§. {) becomes
91 a/) ) ( 1 9f
=2+ =l-=x]+2f=0. 5
ailyae) talrag) Y (53)

In Kreyszig [11], we have the result that if in a portion of a surface isothermic
coordinates can be introduced then that portion of the surface can conformally be
mapped onto a plane. Thus in effect the solution of Eq. (53) provides that mapping
function which conformally maps a surface onto a plane. As a verification of the above

conclusion, we verify that the function
J=4e%/(1 + e¥) (54)
is a solution of Eq. (53). This function is related with the isothermic coordinates op &
sphere. Using the parametric equations of a sphere
x =[a+ P(n))cos8, y=[a+ P(n)]sinfsing, 2 =[a + P(n)}sinBcos ¢

and writing

i

§=¢, {=Intan

where 0 < ¢ < 27 and 0 < § < #, we obtain

- g =8, =9%(a+ PYe¥/(1 4+ e%)’.
Thus the equations
x=(a+P)1-e¥)/(1+e¥),
L] y=2(a+ P)etsiné/ (1 + e¥),
2=2(a+ P)efcosé/ (1 + e¥) (s5)

D!
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1 represent a sphere of radius a + P(w) io terms of the isothermic coordinates £, { in the [
1 surface Since P(n) is an arbitrary function of n, we pow bave the capability of prescribing .
5 a suitable function P(3) to achieve any sort of contraction on expansion in the field. It is
i expected that the representation (55) should prove useful in the computational problems :
¥ associated with a sphere. :
. (
4. Conclusions. In Sec. 2 of this paper a set of second order PDE’s have been obtained :
which generate a series of surfaces between the given inner and outer arbitrary shaped :
bodies. The necessary mathematical apparatus which connects one generated surface with

its neighbor along with the curvature properties of each surface has been incorporated in
the right band side terms of the equations. (Egs. (20) or (22)). By changing the computa-
tional techniques these equations can also be used to generate the 3D coordinates when
more than one inner bodies are present in the field.

In Sec. 3, based on some basic differential geometnc concepts, @ number of field
equations have been isolated which must always be satisfied by any coordinate system in
an Euclidean space. Efficient numenical methods are 10 be developed to solve these

quasilinear equations (Egs. (39)) on a digital computer.
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Appendix A. In this appendix we collect some useful formulae which have been used in
the main text.
As poted in the text, a general cunvilinear coordinate system is denoted as x', i = 1,23,

or as £ 1, §, while a rectangular Cartesian system is dencted as x,,, m = 1,2.3 or as
x, y, 2. Since r is a position vector in an Euclidean space, the covariant base vectors a, are

St ‘.‘i&""l

a, = Or/3x/,

given by
(A1)

while the contravariant base vectors # are given by

¢ = grad x'. (A2)
The covanant and the contravariant metric components are respectively given by
g,=18,a, g/=122. (A3)
Both metric coefficients are related through the equations
8"8. = 8, (A4)
where 8{ are the Kronecher deltas. Also
g =det(g”), gE=1 (A.S)
Based on (A 4), we also have
¥ =g, (A6)
(A7)

=e/(a, X0, )22,

where, bere and in all the expressions a repeated lower and upper index alays stands for
a sum over the range of index values. Also
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£g= dﬂ(&,) = 8363 + 81305 + 8,56,
= 8230 + 8,56, + 823G = £110, + 81264 + 8,3Gs. (A8)
where
G, =88~ (lza)z' Gy =88 — (Su) = gnu8n ~ (812 )2- ‘
G, = 8385 — 8281, Gs = 81282 — 8138 G, = 812813 — 8n8&u- (A9)
Note that
II =G /8' 822= G;/g. ‘33 = G,/g.
8°=G/g. 8" =Gi/8. 8”=Gy/¢. (A.10)
The derivative of a covariant base vector is given by
(A.11)

3a,/9x’ = 3%r/3x'3x’ =T,
The Laplacian of a scalar ¢ in a curnvilinear coordinate system is
3% 39 )
1 —_ r v
v¢=g (a Py l‘,,ax, , (A.12)

where I have been defined in Eqgs. (6).
If ¢ = x™ is any cunvilinear coordinate then from (A.12)

vixm = g T, (A.13)
If ¢ = x_,is any rectangular Cartesian coordinate then from (A.12)

2 4 (o ')a = = 0. (A.19)

y
8 o

Appendix B. In numerical computations it is desirable to solve Eqgs. (22) in their limiting
forms on certain special Lines in the field. Referring to Fig. (2a), let the x-axis be aligned
1o pass through the inper body from two of its points, which, when extended in bdoth
directions meets the outer body at its two coresponding points. The portions of the lies
between the inner and the outer bodies form the right and the left segments. On each
segment y = z = 0, and according to the adopted convention §{ = 0 and { = = on the night
and the left segments respectively for all values of €. With this choice of the axes only Eq.
(22a) is of interest. Taking the limit of Eq. (22a) as { = 0 or { — #, we obtain

x3 + Phx; = Lim (RA2Th/Bn)- (8.1)
or
i<
where the control function P} bas already been chosen a priori. The terms on the right

hand side of Eq. (B.1) are difficult to assess for their imiting behaviors. However, some
guidance can be obtained fiom the exact solution discussed in Sec. 2.3. This approach

suggests that in any case, the following estimates can be used.
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_ X=1)E0)" " xy K= £(5),
o3 B =AGENEDN" 8a=xd, for{ ~Oorn, (B2)
> where f,, £, f; are functions of 7. Using the estimates (B.2) in Eq. (B.1), we obtain
where .

Na)=Pa- F(#), F{)=N1h
The scheme now is to solve Eq. (B.3) by prescribing T(#j) # P} arbitrarily to achjeve the
desired control pf points on the segments. Since P2 has already been chosen in advance
this approach produces those values of F{#j) (though they need not be calculated) which
are consistent with the basic equation, viz., Eq. (22a).
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ABSTRACT

In this paper a set of second-order partial differential
equations for the generation of coordinates in a given surface have
been developed and then solved numerically to demonstrate their
versatality. The proposed equations are not some arbitrarily chosen
equations but are a consequence of the formulae of Gauss and thus
carry with them an explicit dependence on the geometric properties of
the gliven surface. Furthermore, these equations are easy to solve
and require only the specification of the bounding curves to provide
the Dirichlet boundary conditions for their solution. Results of
coordinate generation both in the siImply and doubly-connected regions
on scme known surfaces, with the option of coordinate redistribution,
have been presented. Extension c¢f this technique to arbitrary

surfzces seems to be straightforwar:z.
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I. INTRODUCTION
The problem of generating spatial coordinates by numerical

methods through carefully selected mathematical models is of current

interest both In mechanics and physics. A review of varfous methods

of coordinate generation in both two and three-dimensional Euclidean

spaces is available in [1], and reference may also be made to the

proceedings of two recent conferences, [2], (3], on the topic of

numerical grid generation.

This paper 1is exclusively directed to the problem of

generation of a desired coordinate system in the surface of a given

body and thus, in a basic sense, it is an effort directed at the

problem of grid generation in a two-dimensional non-Euclidean space.

The mathematical model selected for tnis purpcse is based on the

fcrmulae of Gauss for a surface and nas been discussed by the authcr

in earlier publications, [4] - [7]. The resulting equations are
tiiree coupled quasilinear elliptic partial differential equations
with the Cartesian coordinates as the independent variables. These
equations are nonhomogeneous with the righthand sides depending both

on the components of the normal and the mean curvature of the

-~

surface. These equations therefore reflect the geometrical aspect of

the surface in an explicit manner.

The proposed equations have been used to generate
tnree-dimensional coordinates between two given surfaces by using an

extrinsic form of the mean curvature, [7], (8], [9]. However, if the

purpcse is to generate the coordinates only ‘n a given surface then
A the intrinsic form of the mean curvature has to be used, as has been
[ ) dcne in this paper.
X 1

[
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Previous work on the subject of grid generation {n surfaces
has been done by using either the algebraic techniques, [(10] - [12]
or using the PDE approach, [13] - [16]%. All these methods depend
very heavily on the use of highly accurate interpolating schemes. On
the other hand, the method proposed here depends only on the
availability of the surface equation in the cartesian form and on the
prescription of the data on the bounding curves in the surface which
eventually form the Dirichlet boundary conditions for the proposed
equations.

Numerical solutions éf the proposed equations for the
coordinates in either simply or doubly-connected regions of some
known surfaces have been obtained and shown in Figs. (1) - (12). It
has also been shown that any desired control on the distribution of
grid spacing can be excerised by a preoper choice of the control
functions, cf. Figs. (7) - (9). Extension cf the proposed msthod to

arbitrary surfaces is purely formal.

* It has been shown in [16] that the equations proposed in [13] can
be directly obtained by using equations (4.10) - (U4.12) cof sect.
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II. NOMENCLATURE o
:
byg = 2}“).g’u8 : coefficients of the second fundamental form i
in the surface v = const. !
D second-order differential operator; (Eq. 3.3) E
g = det (gij) 2
G, = €1abgp ~ (808)2; ve1,2.3 o
gij or gaB covariant metric coefficients éi
gij or gaB Contravariant metric coefficients ;
J, = /G, Surface Jacobian g
(v), kg;) Principal curvatures at a point in the ’
: surface v = const. _
L  Second-order differential operator; (Eq. 4.13) g
g(v) Unit normal vector on the surface v = const. -
P, Q PgY Control functions
xi 3D Curvilinear Coordinates i}
x® 2D Curvilinear Coordinates ‘
xi 3D Rectangular Cartesian coordinates X, =X, X, =Y, x3 =z ?
(v) Rectangular components of g(v); xgv) - X(v). ;‘
xév) -y xév) . 2V !
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Tﬁs - 1-3’6 ( :a + Be _ uB). the surface Christoffel
2 ax ax% ax?
symbols of the second kind.

ag 98 . g
rfj l.gk! ( ig + J? - 1%). the space christoffel of the
2 ax ax x
second kind.

Aév)xu - ,ra » Beltrami's second-~order differential
parameter
(1) Notation For Partial Derivatives:
Prg = 3L ; Lrng = L :*p.a = Efg etc.
ax® ax%axP ax®

{(ii) Note On The Use of Indices:
The Latin indices i, j, k etc. are used when the index range is

from 1 to 3. The Greek indices a, B, Y, etc. (except v, see

)
below) are used for the cases when the indices assume only two ‘
5

integer values,
v =1 a,8 etc. a2ssume integer values 2 and 3

ve=2: a,B etc. assume integer values 3 and ? (2.1)

ve=3": a,B etc. assume integer values 1 and 2.

(iii) Summation Convention:

indices is

In this paper the summation convention on repeated

the same index appears both as a lower anc¢ as an

: implied when
Thus the summation convention is implied in T:

upper index.

but not in Tua' The summation convention is also suspended
when one repeated index is enclosed in the parentheses, e.g.,

A e AR Yo v v . -

as in T(a)
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III. THE MATHEMATICAL MODEL
The mathematical development of the model equations used in
this paper has already been published in [5], [6], [7]. However, for
the sake of clarity of exposition we list here only the core steps
leading to the final form of the equations. For the ensuing
development we shall constantly use the conventions and symbols as
stated in Section II of the paper.
The formulae of Gauss, (ef. [4), [17]) for a surface v =
const. are written compactly as
. as " Taal,s * 20y (3.1)

a8

Inner multiplication of (3.1) by Gv g =~ then yields

(v) (v}

Dr+G(A x%) Ls= 1 ‘R, (3.2)
where
D~ g%, (3.3)
and .
R=cg* b =0 CIRI N (3.4)
Equation (3.2) provides taree second-order partial

differential equations for the de:-ermination of the Cartesian

coordinates x1.x2, x3 or X, vy, 2. Hcwever, before we impose any

restriction on the Beltramians A2V) 6 for the purpose of ccordinate

control, it is instructive to state the following results:

T . - »' . . . - - . " . - .
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(1) All the terms in Eq. (3.2) depend only on the surface
coordinates x®, (Refer to the scheme (2.1) for the

variation of a with v).

(11) For any allowable coordinate transformation X°, i.e.,
x* - X%,

the form of the equatien (3.2) remains invariant, i.e.,

RT3
Dr+G(A(v) x%) r =2 R (3.5)
where now
- 3'
5 r = — etc.,
5 $ xS
) (v)
s = =T )
( R =G (kp +Kkep')
, (iii) It is important to note that both Q(V) and
(v) k(v) (twice the mean curvature of a
II
surface) are coordinate invariants, viz.,
iv) —(v)
n (%) (3.6a)
MON (v) e
1 Kr1 1tk (3.6b)
- From Eq. (3.4).
3 (v) | (v) aB
. kI II =8 baB’ (3.7)
: which is the intrinsic form of the mean curvature. To have an
'
( extrinsic form, we consider the formula of the second derivative of
the position vector r in a 3D Euclidean space given as, e.g., €73,
e N R R

T

pe

[
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l:vU 13~k (3.8)

For the surface xV « const., Eq. (3.8) is rewritten as

! (3.9)

where the derivatives with respect to xV appearing in F:B are assumed

to have been evaluated at xv = const. Taking the dot product of

(v) (v)

(3.9) with n and observing that n is orthogonal to any two

vectors among {_‘k.we get

(v) - v (V) _ j

L T I (3.10) ;

where I
A(v) = n(V) . r ‘

n T v
Thus, the extrinsic form of (3.7) is g
(v) , (\)) aB_.v (v)
I II =€ FGB A ,3.11)

By using the form (3.11) in Eq. (3.2), we get the model
equations for the generation of znother surface from the dats of x,
Y.z, x.v. y.v, z,v of a given surface. This scheme eventuzlly forms
a method for 3D coordinate generation between any two (or mcre) given
surfaces. For more details and cormputational results on this aspect

of the use of Eq. (3.2) refer to [7], (8], [9], [16].

Since the subject matter of the present paper is confined to

the problem of generation of surface coordinates in a given surface,

(|

o

; it is sufficient for us to keep the intrinsic form (3.7) in Eq.

t (3.2). q
4 ;
.
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IV. THE GENERATING SYSTEM

The model equation for generating the coordinates in a given
surface is now taken as the equation (3.2). To be specific, we take
the surface x3 = const. (i.e., v= 3) as the given surface. In

! 3 the three

expanded form, taking r = (x,y,2), x = §, x2 =n X" =g,

equations are ‘

L rea(3) (3) - (3 |
Dx [(A2 £) Xe * (8,""n) anG3 X' R, (4.1)
(3) (3) - (3)
(3) (3) L, (3)
Dz + [(A2 £) zp ¢ (8,7 n) zn] G3 Z'°’R, (4.3)
where k
D=g..9 - 2g8,.9 * 8, 3__,
22 °EE 12°€En 1 nn (4.4)
and
8 - ['gg (8557/53) - 2812 703)) /g,
an 3 (4.5)
- (28,7, - &g ', - '1‘1)/0
12h12 7 ByqTaz ~ 8201, /63,
(3)  _r 2 _ 3 (g,,//G )1 /G
3 a;"'n [an (311//53) 3 12 3 3
3 2 o 2 o
= =(28,,T 1, = &1yl - 85,14 )/63- :
4 3 (4.6)
We now suitably restrict the distributicn of the Beltramians
E‘ 80 as to have available a sort of flexibility in the choice of the
U coordinates £, n in the surface. The most general form which can be
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chosen (cf. [6], is ‘
(3) aBpl f
£ = P ., :
o (4.7a) l
(3) - g8 p2 Z
2N BT Fap (4.7b) -
where PQB' PiB are symmetric in o, 8 and represent six arbitrary ;
;T chosen control functions. Using the summation convention in (8.7) .
and the formulae %
‘ 1 12 22
- B = 8,,/C3. 8 = < 8,/03 8 &1 /%3
S
f‘ we have
-
é (3) (3) ( )
1 -7 . 4.8
- O3 8776 =7, Ghan =0
where
T g, P, -2 +g P ! 6a)
22511 812512 * B2 (4.9a)
- 2 2 2
Q = 8Py 7 2815P 5 * 8y9P5p- (4.9b)
The final form of the eqs. (4.1) -~ (4.3) is now
- Lx = X(B)R (4.10)
H (3)
5 Ly = Y'°'R, (8.11)
> L (3)
t_. Lz =Z'°'R , (4.12)
‘) where
"-': L= 8y03¢ ™ 281209 *9)9p, +
\ 6faider, « (ai¥ma 3 (4.13]
9 13 n
~
b
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h
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" 8309 " 2813, * 811y * Po, * W, (4.13b)
Equations (4.10) - (4.13) are the basic generating equations

for the curvilinear coordinates in a given surface. The function R

appearing on the right hand side of the Eqs. (4.10)- (4.12) is given
by

(3)
11 )G3.

R = (k3 ok
The quantity in the parentheses is twice the mean curvature of the
surface and as noted in Sect. III is invariant to the coordinates
introduged is the given surface. Consequently k£3) + kgg)
reflects a basic geometrical aspect of the surface and is a function
of the coordinates x, y, z. Since the Cartesian form of the equaticn

z = f (x,y) 1is assumed to be available for the surface under

consideraticn, it 1is obvious from elementary differential gecmetry

that

k(v) k(v)

2
1 tkgpoo [(1 + zy) zZ.x = 22, zyzxy +
2 2 2.3/2
(1 + z) zyy]/(l vzt zy) ) (4.14)

For arbitrary surfaces, it 1{is always possible to generate the
Cartesian form z = f(x,y) of the surface by least square data fitting
thus having kI + kII as a function of x and y. It is also possible
to solve only Eqs. (4.10) and (4.11) while calculating z from the

given equation z = f(x,y) of the surface. All these aspects have

been discussed in Sect. VI.
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V. GENERATING EQUATIONS BASED ON THE VARIATIONAL PRINCIPLE

Two attractive features of the chosen equations (4.10) -
(4.13) are their simplicity and their explicit dependence on a basic
surface~- geometric property, viz., the mean curvature. Any other ad
hoe¢, though consistent, set of equations can also be used to generate
the coordinates but then it will be extremely difficult to isolate
those basic surface-geometric properties which distinguish one
surface from the other. In this connection the variational approach
is also a possibility which has been used by Brackbill et al [19] for
coordinate generation in a flat space, i.e., a 2D plane.

Generally, let us consider the surface functional

-[/5 :
I =JvG3 ¢ dedn (5.1)
Then 81 = 0 leads one to the Euler-iLagrange equations
3(/G e
2 (/63¢ ) - 2 3) ¢ '
ax, aXB axr,a (5.2)

where, referring to Sect. II we have used the summation convention,

xr (r = 1,2,3) as the rectangule? Cartesian coordinates, and

ax A
xr B = 8", xr B - 3 Xg
' 3x @ ax%ax

With these notations, it is a direct algebraic prcblem to show that
Lx = _/_G-:é _a_ —l aG3
r 2 Y /53 axr.Y

),
(5.3)

where the operator L has earlier been defined in (4.13a). Let 9% be a

function only of X then expanding (5.2) while using (5.3), we get

8'
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Lxr L -M ’ (5.4)
where

3G
ox

3 2, 99 aG3’)«9»6.3.‘1(9—- )
reax® Prp oaxB ¢ axBlax g
(5.5)

Thus the generating system {5.4) is of the same form as originally

M=2
5 {

Q

proposed but it 1looks to be a formidable problem to select that ¢
which yields the right hand sides of Eqs. (4.10)-(4.13). One simple
result for the case when ¢ = 1 is obvious. For, in this case the

minimization of I in (5.1) implies

and these are the equations for a minimal surface. Another case in

which ¢ = F/G3 with F still as a function only of x yields the

r,8

Euler-Lagrange equations as (5.4) with M defined as

we 103 ok 3 o
2F axr.B BxB axs axr,e
g 3G 303_E§i(af)'o
263 axr.B axB F axB x
r.8 (5.6)

The above case of ¢ = F/G3 is of interest because the choice

Fzg #g'
1 22 (5.7a)

or

o =gl +g? (5.7b)
is equivalent to the "smoothness" problem in 2D plane coordinates as
shown by Brackbill ([19]. It must, however, be stated that

"smoothness" of coordinates in a 2D plane problem is due to the

12
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satisfaction of the Laplace equations. No such criteria is obvious

by using (5.7) in (5.6), though it will of course yield a consistent

set of three equations for the determination of x1, x2. x3.
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VI. NUMERICAL IMPLEMENTATION

>

The numerical solution of Eqs. (4.10)-(4.12) can be obtained

by any suitable numerical method of solution which has proved useful
in any elliptic grid generation problem. In this paper the equations
have been discritized by using central differences for both the first
and second derivatives and then solved iteratively from an initial
guess by using the LSOR. The main difference between the coordinates
in a flat space and in a surface is the appearance of the right hand

side terms in which the quantity R can be established a' rpriori. .

This requires a knowledge of the equation of the surface z = f(x,y),

which when used in (4.14) yields R as a function of x and y. For

3 L B an o 4
PN e
s v .
. PR P

arbitrary surfaces the equation z = f(x,y) can be established by the

least square method, [18].

To demonstrate the potential of Egs. (4.10)-(4.12) as a viable
set of equations for the generation of surface coordinates, we have
selected three well known surfaces for the purpose of introducing a
desired system of coordinates in them.

a. Coordinates In An Elliptic Cylinder Forming A

Simply-connected Domain.

This problem is a prototype of coordinate generation in a

given piece of a surface. The region under consideration forms a

simply-connected region bounded by the space arc n =n°,n = n. £ =

£, and § = 51. Here n =n,,n, are the elliptical arcs in the

= Xy-plane, and g = 50,51, are straight-~lines parallel to the z-axis.

14 l




€T W e e WT LT T e T e g
. N r’rrmwmvmwwwﬁwwxﬂﬁ“‘? AR A SEAR L AL AL i s

o SRR - A

VI. NUMERICAL IMPLEMENTATION

The numerical solution of Eqs. (4.10)-(4.12) can be obtained -

by any suitable numerical method of solution which has proved useful :
in any elliptic grid generation problem. In this paper the equations
have been discritized by using central differences for both the first
and second derivatives and then solved iteratively from an initial
guess by using the LSOR. The main difference between the coordinates

in a flat space and in a surface is the appearance of the right hand

side terms in which the quantity R can be established a' rpriori. .

This requires a knowledge of the equation of the surface z = f(x,y),

which when used in (4.14) yields R as a function of x and Y. For

B 9 ; afonilion

arbitrary surfaces the equation z = f(x,y) can be established by the

least square method, [18].

To demonstrate the potential of Egs. (4.10)-(4.312) as a vizble

set of equations for the generation of surface coordinates, we have
selected three well known surfaces for the pu